Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-[4-(Dimethylamino)benzylidene]-2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one

Burkhon Zh. Elmuradov,* Rasul Ya. Okmanov, Asgar Sh. Abdurazakov, Bakhodir Tashkhodjaev and Khusnutdin M. **Shakhidoyatov**

S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan Correspondence e-mail: burkhon@rambler.ru

Received 18 May 2010; accepted 1 June 2010

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.142; data-to-parameter ratio = 10.6.

The title compound, $C_{20}H_{19}N_3O$, was obtained by condensation of 2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid deoxyvasicinone, isolated from *Peganum Harmala*) with 4-(dimethylamino)benzaldehyde in the presence of sodium methoxide. The 2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one part of the molecule is roughly planar (r.m.s. deviation = 0.0178 Å) and is essentially coplanar with the benzilidene ring (r.m.s. deviation = 0.0080 Å), forming a dihedral angle of 5.0 $(1)^{\circ}$. The crystal structure is stabilized by two aromatic π - π stacking interactions observed between the benzene rings of neighboring molecules [centroid-centroid distance = 3.7555 (19) Å.

Related literature

For the synthesis of 2,3-dihydro-1*H*-pyrrolo[2,1-*b*]quinazolin-9-one and the title compound, see: Shakhidoyatov et al. (1977); Elmuradov et al. (2009); Shakhidoyatov & Kaysarov, (1998); Jahng et al. (2008). For the physiological activity of 2,3dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one and its derivatives, see: Chatterjee & Ganguly, (1968); Al-Shamma et al. (1981); Johne (1981); Telezhenetskaya & Yunusov, (1977); Yunusov et al. (1978). For related structures, see: Barnes et al. (1985); Wu et al. (1997).

Experimental

Crystal data

C ₂₀ H ₁₉ N ₃ O	
$M_r = 317.38$	
Monoclinic, $P2_1/c$	
a = 8.8030 (18) Å	
<i>b</i> = 16.415 (3) Å	
c = 11.463 (2) Å	
$\beta = 105.05 \ (3)^{\circ}$	

Data collection

Stoe Stadi-4 four-circle diffractometer Absorption correction: ψ scan (X-RED; Stoe & Cie, 1997). $T_{\min} = 0.854, \ T_{\max} = 0.906$ 2446 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.142$ S = 1.132342 reflections

V = 1599.6 (6) Å³ Z = 4Cu Ka radiation $\mu = 0.66 \text{ mm}^{-1}$ T = 300 K $0.60 \times 0.20 \times 0.15~\mathrm{mm}$

```
2342 independent reflections
1728 reflections with I > 2\sigma(I)
\theta_{\rm max}=60.0^\circ
3 standard reflections every 60 min
   intensity decay: 10.0%
```

```
220 parameters
H-atom parameters constrained
\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-1}
\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}
```

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F3-T047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2264).

References

- Al-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745-747.
- Barnes, J. C., Low, J. N., Paton, J. D., Dunn, A. D. & Kinnear, K. I. (1985). Acta Cryst. C41, 282-284.
- Chatterjee, A. & Ganguly, M. (1968). Phytochemistry, 7, 307-311.
- Elmuradov, B. Zh., Khodzhaniyazov, Kh. U. & Shakhidoyatov, Kh. M. (2009). Republican scientific-practical conference. Actual problems of Chemistry, Samarkand, vol. 1, p. 32.
- Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J. K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607-609.
- Johne, S. (1981). Pharmazie, 36, 583-596.
- Shakhidoyatov, Kh. M. & Kaysarov, I. (1998). Chem. Nat. Comp. 34, 59-61. Shakhidoyatov, Kh. M., Yamankulov, M. Ya. & Kadyrov, Ch. Sh. (1977). Khim.
- Prir. Soedin. 4, 552-556.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.
- Telezhenetskaya, M. V. & Yunusov, S. Yu. (1977). Khim. Prir. Soedin. 6, 731-743
- Wu, X. Y., Qin, G. W., Cheung, K. K. & Cheng, K. F. (1997). Tetrahedron, 53, 13323-13328
- Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; 'Anticholinesterase agent', Byull. Izobret., No. 17.

Acta Cryst. (2010). E66, o1592 [doi:10.1107/S1600536810020878]

(E)-3-[4-(Dimethylamino)benzylidene]-2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one

B. Z. Elmuradov, R. Y. Okmanov, A. S. Abdurazakov, B. Tashkhodjaev and K. M. Shakhidoyatov

Comment

The derivatives of tricyclic quinazoline alkaloids possess different pharmacological activities (Chatterjee & Ganguly, 1968; Al-Shamma *et al.*, 1981; Johne, 1981; Telezhenetskaya & Yunusov, 1977; Yunusov *et al.*, 1978) and was found simples and convenient methods of a synthesis of these compounds (Shakhidoyatov *et al.*, 1977; Shakhidoyatov & Kaysarov, 1998; Jahng *et al.*, 2008).

Condensation of 2,3-dihydro-1*H*-pyrrolo[2,1-*b*]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from *Peganum Harmala*) (Chatterjee & Ganguly, 1968) with 4-dimethylaminobenzaldehyde at 278 (1) K in presence of sodium methox-ide (Elmuradov *et al.*, 2009) leads to the formation of (*E*)-3-(4-dimethylamino)benzylidene-2,3-dihydro- 1*H*-pyrrolo[2,1-*b*]quinazolin-9-one (Figure 1).

The quinazoline part of molecule (C1/C2/C3/C3a/N4/C4a/C5/C6/C7/C8/C8a/C9/N10) is flat, r.m.s. deviation = 0.0178 Å, and benzilidene ring (C1'/C2'/C3'/C4'/C5'/C6'/C7') is also flat, r.m.s. deviation = 0.0080 Å, the angle between fragment planes is 5.0 (1)° (Figure 2). Torsion angle in fragment C3a–C3–C7'–C6' is 175.0 (5)° (Barnes *et al.*, 1985; Wu *et al.*, 1997), indicating the conjugation of π -electronic systems of pyrrolo(2,1-*b*)quinazolone and benzilidene rings. The sum of valent angles of all nitrogen atoms are close to 360° (Figure 3) which specifies sp^2 hybridizations of nitrogen atoms. It specifies, that the lone electronic pair of nitrogen atoms participate in a conjugation with π electrons of aromatic ring. The crystal structure is stabilized by π - π interactions between the benzene rings of neighbor standing molecules with the distance $Cg3\cdots Cg4^i = 3.7555$ (19) Å [symmetry code: (i) -*x*, 1 - *y*, 1 - *z*; *Cg*3 and *Cg*4 are centroid of the C1'-C6' and C4a/C5-C8/C8a two benzene rings].

Experimental

0.115 g sodium (5 mmole) was dissolved in 5 ml absolute methanol, and 0.186 g (1 mmole) of 2,3-dihydro-1*H*-pyrrolo[2,1*b*]quinazolin-9-one and 0.151 g (1 mmole) 4-dimethylamino-benzaldehyde were added (Figure 1). Reaction mixture was left at 278 (1) K for 3 weeks. The dropped out single crystals, suitable for X-ray analysis were filtered, flushed at first with alcohol, then water. 0.05 g (16%) of the title compound was obtained in the reaction, m.p. 514-516 K.

Refinement

The 10% decay correction was applied by using the programm *X-RED*. The H atoms bonded to C atoms were placed geometrically (with C–H distances of 0.98 Å for CH; 0.97 Å for CH₂; 0.96 Å for CH₃; and 0.93 Å for C_{ar}) and included in the refinement in a riding motion approximation with $U_{iso}(H)=1.2U_{eq}(C)$ [$U_{iso}(H)=1.5U_{eq}(C)$ for methyl H atoms].

Figures

Fig. 1. Reaction sequence.

Fig. 2. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

(E)-3-[4-(Dimethylamino)benzylidene]-2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one

Crystal data

F(000) = 672
$D_{\rm x} = 1.318 {\rm ~Mg~m}^{-3}$
Melting point: 514(2) K
Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
Cell parameters from 12 reflections
$\theta = 10-20^{\circ}$
$\mu = 0.66 \text{ mm}^{-1}$
T = 300 K
Prizmatic, light yellow
$0.60\times0.20\times0.15~mm$

Data collection

Stoe Stadi-4 four-circle diffractometer	1728 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.000$
graphite	$\theta_{\text{max}} = 60.0^{\circ}, \ \theta_{\text{min}} = 4.8^{\circ}$
Scan width (ω) = 1.32 – 1.56, scan ratio 20: ω = 0.00 I(Net) and sigma(I) calculated according to Blessing (1987)	$h = -9 \rightarrow 9$
Absorption correction: ψ scan (<i>X-RED</i> ; Stoe & Cie, 1997).	$k = 0 \rightarrow 18$
$T_{\min} = 0.854, \ T_{\max} = 0.906$	$l = 0 \rightarrow 12$
2446 measured reflections	3 standard reflections every 60 min
2342 independent reflections	intensity decay: 10.0%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0446P)^{2} + 1.0639P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
2342 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0033 (3)

methods

Special details

Experimental. Empirical absorption correction using ψ Scan. Reflections used Mu * R = 0.00

H K L, θ, χ, I~min~/I~max~: -2 1 1 21.1 80.5 0.900

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

	x	У	Ζ	$U_{iso}*/U_{eq}$
01	-0.1964 (3)	0.57316 (13)	0.07780 (19)	0.0553 (7)
C1	0.0365 (4)	0.48250 (18)	0.2373 (3)	0.0496 (9)
H1A	0.0818	0.4880	0.1691	0.060*
H1B	-0.0432	0.4402	0.2197	0.060*
C2	0.1634 (4)	0.46318 (18)	0.3530 (3)	0.0435 (8)
H2A	0.1435	0.4107	0.3851	0.052*
H2B	0.2663	0.4617	0.3370	0.052*
C3	0.1562 (3)	0.52982 (17)	0.4410 (3)	0.0373 (7)
C3A	0.0343 (3)	0.58741 (17)	0.3798 (2)	0.0355 (7)
N4	-0.0078 (3)	0.65349 (14)	0.4246 (2)	0.0391 (6)
C4A	-0.1278 (3)	0.69758 (17)	0.3470 (3)	0.0378 (7)
C5	-0.1799 (4)	0.76888 (18)	0.3914 (3)	0.0459 (8)
H5A	-0.1330	0.7856	0.4700	0.055*

C6	-0.2995 (4)	0.8144 (2)	0.3201 (3)	0.0495 (8)
H6A	-0.3327	0.8618	0.3503	0.059*
C7	-0.3707 (4)	0.78958 (19)	0.2026 (3)	0.0476 (8)
H7A	-0.4525	0.8201	0.1549	0.057*
C8	-0.3213 (3)	0.72058 (19)	0.1568 (3)	0.0452 (8)
H8A	-0.3690	0.7047	0.0780	0.054*
C8A	-0.1995 (3)	0.67373 (17)	0.2279 (3)	0.0379 (7)
C9	-0.1474 (3)	0.59996 (18)	0.1804 (3)	0.0413 (7)
N10	-0.0298 (3)	0.55973 (14)	0.2639 (2)	0.0384 (6)
N1'	0.7209 (3)	0.34893 (18)	0.8577 (2)	0.0585 (8)
C1'	0.3643 (3)	0.49063 (17)	0.6292 (2)	0.0375 (7)
C2'	0.4284 (4)	0.42189 (18)	0.5885 (3)	0.0445 (8)
H2'A	0.3902	0.4064	0.5081	0.053*
C3'	0.5455 (4)	0.37605 (19)	0.6621 (3)	0.0451 (8)
H3'A	0.5847	0.3310	0.6303	0.054*
C4'	0.6065 (3)	0.39601 (18)	0.7836 (3)	0.0426 (8)
C5'	0.5453 (4)	0.46547 (19)	0.8262 (3)	0.0462 (8)
H5'A	0.5839	0.4812	0.9064	0.055*
C6'	0.4282 (3)	0.51068 (18)	0.7500 (3)	0.0423 (8)
H6'A	0.3904	0.5566	0.7808	0.051*
C7'	0.2395 (3)	0.54038 (17)	0.5554 (3)	0.0383 (7)
H7'A	0.2135	0.5864	0.5934	0.046*
C8'	0.7668 (5)	0.3632 (3)	0.9855 (3)	0.0906 (15)
H8'A	0.6753	0.3623	1.0164	0.136*
H8'B	0.8171	0.4154	1.0015	0.136*
H8'C	0.8386	0.3214	1.0243	0.136*
C9'	0.7788 (4)	0.2766 (2)	0.8122 (3)	0.0617 (10)
H9'A	0.8256	0.2912	0.7482	0.093*
H9'B	0.6932	0.2397	0.7818	0.093*
H9'C	0.8562	0.2509	0.8762	0.093*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0632 (15)	0.0588 (14)	0.0371 (13)	0.0057 (12)	0.0006 (11)	-0.0039 (11)
C1	0.056 (2)	0.0412 (18)	0.0468 (19)	0.0081 (16)	0.0043 (16)	-0.0075 (15)
C2	0.0460 (18)	0.0406 (18)	0.0415 (17)	0.0033 (15)	0.0072 (15)	-0.0009 (14)
C3	0.0345 (16)	0.0388 (16)	0.0379 (16)	-0.0011 (13)	0.0079 (13)	0.0008 (13)
C3A	0.0346 (16)	0.0360 (16)	0.0353 (15)	-0.0039 (13)	0.0079 (13)	-0.0016 (13)
N4	0.0348 (14)	0.0373 (14)	0.0418 (14)	0.0027 (11)	0.0039 (11)	-0.0016 (11)
C4A	0.0363 (17)	0.0348 (16)	0.0427 (17)	-0.0020 (13)	0.0111 (14)	0.0033 (13)
C5	0.0415 (18)	0.0440 (19)	0.0507 (19)	0.0007 (15)	0.0093 (15)	-0.0026 (15)
C6	0.0465 (19)	0.0432 (18)	0.059 (2)	0.0066 (15)	0.0149 (17)	0.0039 (16)
C7	0.0395 (18)	0.0464 (19)	0.057 (2)	0.0056 (15)	0.0124 (15)	0.0178 (16)
C8	0.0378 (17)	0.0506 (19)	0.0455 (18)	0.0015 (15)	0.0079 (14)	0.0109 (15)
C8A	0.0375 (17)	0.0371 (17)	0.0384 (16)	-0.0026 (13)	0.0088 (13)	0.0044 (13)
C9	0.0400 (18)	0.0453 (18)	0.0370 (17)	-0.0056 (14)	0.0072 (14)	0.0017 (14)
N10	0.0401 (14)	0.0368 (14)	0.0356 (13)	0.0023 (11)	0.0051 (11)	-0.0017 (11)

N1'	0.0514 (17)	0.0607 (19)	0.0523 (17)	0.0112 (15)	-0.0062 (14)	0.0008 (14)
C1'	0.0340 (16)	0.0379 (17)	0.0383 (16)	-0.0034 (13)	0.0052 (13)	-0.0011 (13)
C2'	0.0471 (19)	0.0445 (18)	0.0385 (17)	-0.0001 (15)	0.0054 (14)	-0.0029 (14)
C3'	0.0454 (19)	0.0449 (18)	0.0431 (18)	0.0035 (15)	0.0082 (15)	0.0014 (15)
C4'	0.0336 (17)	0.0441 (18)	0.0462 (18)	-0.0052 (14)	0.0033 (14)	0.0058 (15)
C5'	0.0423 (18)	0.0491 (19)	0.0414 (18)	-0.0042 (16)	0.0004 (15)	-0.0028 (15)
C6'	0.0411 (17)	0.0412 (17)	0.0426 (17)	-0.0020 (14)	0.0071 (14)	-0.0046 (14)
C7'	0.0347 (16)	0.0368 (16)	0.0430 (17)	0.0010 (13)	0.0096 (14)	-0.0007 (13)
C8'	0.092 (3)	0.103 (3)	0.056 (2)	0.034 (3)	-0.017 (2)	0.000 (2)
C9'	0.048 (2)	0.055 (2)	0.075 (2)	0.0088 (18)	0.0019 (18)	0.0083 (19)
Geometric paran	neters (Å, °)					
O1—C9		1.225 (3)	C8A—	С9	1.450	(4)
C1—N10		1.461 (4)	C9—N	10	1.382	(4)
C1—C2		1.529 (4)	N1'—C	24'	1.375	(4)
C1—H1A		0.9700	N1'—C	28'	1.434	(4)
C1—H1B		0.9700	N1'—C	29'	1.442	(4)
C2—C3		1.500 (4)	C1'—C	6'	1.392	(4)
C2—H2A		0.9700	C1'—C	2'	1.395	(4)
C2—H2B		0.9700	C1'—C	27'	1.452	(4)
C3—C7'		1.338 (4)	C2'—C	3'	1.374	(4)
C3—C3A		1.465 (4)	С2'—Н	12'A	0.9300)
C3A—N4		1.295 (3)	C3'—C	'4'	1.395	(4)
C3A—N10		1.378 (3)	С3'—Н	13'A	0.9300)
N4—C4A		1.394 (4)	C4'—C	5'	1.402	(4)
C4A—C5		1.400 (4)	C5'—C	6'	1.381	(4)
C4A—C8A		1.403 (4)	С5'—Н	[5'A	0.9300)
C5—C6		1.374 (4)	Сб'—Н	[6'A	0.9300)
C5—H5A		0.9300	С7'—Н	[7'A	0.9300)
C6—C7		1.390 (4)	С8'—Н	[8'A	0.960)
C6—H6A		0.9300	С8'—Н	[8'B	0.960)
С7—С8		1.366 (4)	С8'—Н	[8'C	0.9600)
C7—H7A		0.9300	С9'—Н	[9'A	0.960)
C8—C8A		1.397 (4)	С9'—Н	19'B	0.9600)
C8—H8A		0.9300	С9'—Н	19'C	0.9600)
N10-C1-C2		103.9 (2)	C3A—	N10—C9	123.8	(2)
N10-C1-H1A		111.0	C3A—	N10—C1	113.7	(2)
C2—C1—H1A		111.0	C9—N	10—C1	122.5	(2)
N10-C1-H1B		111.0	C4'—N	[1'—C8'	120.5	(3)
C2—C1—H1B		111.0	C4'—N	[1'—C9'	120.7	(3)
H1A—C1—H1B		109.0	C8'—N	[1'—C9'	118.2	(3)
C3—C2—C1		106.4 (2)	C6'—C	21'—C2'	115.5	(3)
C3—C2—H2A		110.4	C6'—C	21'—C7'	119.7	(3)
C1—C2—H2A		110.4	C2'—C	1'—C7'	124.8	(3)
C3—C2—H2B		110.4	C3'—C	2'—C1'	122.8	(3)
C1—C2—H2B		110.4	C3'—C	2'—H2'A	118.6	
H2A—C2—H2B		108.6	C1'—C	2'—H2'A	118.6	
C7'—C3—C3A		122.2 (3)	C2'—C	3'—C4'	121.1	(3)

C7'—C3—C2	130.2 (3)	C2'—C3'—H3'A	119.4
C3A—C3—C2	107.6 (2)	C4'—C3'—H3'A	119.4
N4—C3A—N10	124.8 (3)	N1'—C4'—C3'	121.0 (3)
N4—C3A—C3	126.9 (3)	N1'—C4'—C5'	121.8 (3)
N10-C3A-C3	108.3 (2)	C3'—C4'—C5'	117.1 (3)
C3A—N4—C4A	115.4 (2)	C6'—C5'—C4'	120.5 (3)
N4—C4A—C5	117.9 (3)	C6'—C5'—H5'A	119.8
N4—C4A—C8A	123.4 (3)	C4'—C5'—H5'A	119.8
C5—C4A—C8A	118.7 (3)	C5'—C6'—C1'	123.0 (3)
C6—C5—C4A	120.7 (3)	С5'—С6'—Н6'А	118.5
С6—С5—Н5А	119.6	С1'—С6'—Н6'А	118.5
C4A—C5—H5A	119.6	C3—C7'—C1'	129.6 (3)
C5—C6—C7	120.0 (3)	C3—C7'—H7'A	115.2
С5—С6—Н6А	120.0	С1'—С7'—Н7'А	115.2
С7—С6—Н6А	120.0	N1'—C8'—H8'A	109.5
C8—C7—C6	120.4 (3)	N1'—C8'—H8'B	109.5
С8—С7—Н7А	119.8	H8'A—C8'—H8'B	109.5
С6—С7—Н7А	119.8	N1'—C8'—H8'C	109.5
C7—C8—C8A	120.3 (3)	H8'A—C8'—H8'C	109.5
С7—С8—Н8А	119.8	H8'B—C8'—H8'C	109.5
C8A—C8—H8A	119.8	N1'—C9'—H9'A	109.5
C8—C8A—C4A	119.8 (3)	N1'—C9'—H9'B	109.5
C8—C8A—C9	120.7 (3)	H9'A—C9'—H9'B	109.5
C4A—C8A—C9	119.5 (3)	N1'—C9'—H9'C	109.5
O1—C9—N10	120.5 (3)	Н9'А—С9'—Н9'С	109.5
O1—C9—C8A	126.4 (3)	Н9'В—С9'—Н9'С	109.5
N10-C9-C8A	113.1 (3)		

